Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Study of Particle Size Distributions Emitted by a Diesel Engine

1999-03-01
1999-01-1141
This paper presents results from a study of the particle size distributions emitted by a heavy-duty diesel engine equipped with a common-rail fuel injection system. The study focused on two key sampling and engine operating variables: dilution ratio and fuel injection pressure. Results show that the number mean diameter of the particle size distributions decreased with increasing dilution ratios. Also, the total number concentration of particles did not change with different dilution ratios. In addition, it was found that fuel injection pressures affected the size distribution of the particles sampled. Under some engine operating conditions increasing the fuel injection pressure resulted in an increased number of nuclei mode particles.
Technical Paper

Applications of Friction Algorithms for Rapid Engine Concept Assessments

1999-03-01
1999-01-0558
This paper presents the development and applications of engine friction algorithms to quickly estimate performance, optimum geometry of critical engine components, and packaging for rapid engine concept assessments. The development and implementation of some knowledge-based design rules will also be presented to quickly estimate the critical geometry of engine components and component weight such as valve sizing, piston weight, crankshaft geometry, etc. Some examples of powertrain concept design, such as the estimation of friction and packaging will be presented. The simulation results of the friction algorithms will be compared to some of available experimental data and also other friction estimation methods.
Technical Paper

A Fuel Vapor Model (FVSMOD) for Evaporative Emissions System Design and Analysis

1998-10-19
982644
A fuel vapor system model (FVSMOD) has been developed to simulate vehicle evaporative emission control system behavior. The fuel system components incorporated into the model include the fuel tank and pump, filler cap, liquid supply and return lines, fuel rail, vent valves, vent line, carbon canister and purge line. The system is modeled as a vented system of liquid fuel and vapor in equilibrium, subject to a thermal environment characterized by underhood and underbody temperatures and heat transfer parameters assumed known or determined by calibration with experimental liquid temperature data. The vapor/liquid equilibrium is calculated by simple empirical equations which take into account the weathering of the fuel, while the canister is modeled as a 1-dimensional unsteady absorptive and diffusive bed. Both fuel and canister submodels have been described in previous publications. This paper presents the system equations along with validation against experimental data.
Technical Paper

High Temperature Stability of Ceria-Zirconia Supported Pd Model Catalysts

1998-02-23
980668
A series of ceria and ceria-zirconia supported Pd model automotive catalysts were prepared and aged under air or redox conditions at 1050°C for 12 h. The supports were manufactured by different methods and represent a range of compositions. The samples were characterized before and after aging by BET, X-ray diffraction, mercury porosimetry, XPS, H2 temperature-programmed reduction, and oxygen storage capacity measurements. Oxygen storage measurements revealed that the behavior of the catalysts varied according to aging conditions and temperature of measurement. Pd/ceria-zirconia catalysts showed higher oxygen storage characteristics after 1050°C aging than Pd/ceria catalysts, and the phase purity of the ceria-zirconia was shown to positively affect the amount of oxygen storage. The initial rates of oxygen release from the model catalysts at 350°C were shown to depend on the preparation conditions of the supports.
Technical Paper

Critical Engine Geometry Generation for Rapid Powertrain Concept Design Assessment

1998-02-23
981090
This paper presents some of the design rules used to calculate critical geometry of engine components, and the object-oriented component hierarchy system in PET. This paper also presents parametric solid model assembling schemes used to dynamically construct an assembly of whole powertrain systems. Some examples of powertrain concept design, such as the estimation of friction, packaging, and moving component clearances, will be presented. The computational efficiency of this concept design method will be compared to traditional methods also.
Technical Paper

Matching Ignition System Multi-Spark Calibration to the Burn-Rate of an Engine to Extend Ignitability Limits

1998-02-23
981046
“Multi-Spark” refers to the charging and discharging of an ignition coil multiple times during a single combustion event. This paper attempts to use multi-sparking to achieve an effect similar to a long duration spark to enhance combustion during slow burn conditions. Although multi-sparking is more typical of capacitive discharge (CDI) ignition systems, this paper discusses the multi-sparking of Kettering ignition systems to achieve the benefits of multi-sparking without CDIs' cost, packaging, complexity and reliability issues. The goal of the multi-spark calibration is to successfully initiate flame kernal development with the first spark discharge and add supplemental energy fast enough through restriking to prevent the flame kernal from quenching.
Technical Paper

High-Speed/High-Resolution Imaging of Fuel Sprays from Various Injector Nozzles for Direct Injection Engines

1995-02-01
950289
A high-speed/high-resolution imaging technique and analysis were applied to study fuel injector spray timed evolution in ambient air and in a motored single-cylinder engine. Alcohol fuel was injected from a mid-pressure injection system into the engine cylinder at shaft speed of 1,000 rpm. The fuel injection system with various nozzles was designed for use in the EPA/NVFEL program to develop clean and efficient engines that use alternative fuels. A 15W copper vapor laser with a fiber optic delivery system synchronized with a high-speed drum streak camera was utilized to expose films at 5,000 frames per second (fps). The spray characteristics were investigated at 15.0 MPa injection pressure and injection duration range of 3-5 ms. A sequence of successive frames was selected from the films to examine the influence of the injector parameters and the valve lift on the atomization process. The spray penetration was quantified by analyzing the high-speed films.
Technical Paper

The Aerodynamic Development of the Probe IV Advanced Concept Vehicle

1983-06-06
831000
The aerodynamic development and characteristics of a four-passenger advanced concept automobile are described. An overview of the areas of the vehicle design which were dealt with to obtain a drag coefficient value of 0.153 is provided. The interior packaging philosophy is outlined which led to the potential for packaging four to six passengers within an extremely low drag automobile. Parametric shape studies of the major surface design elements are documented from the contributing development testing. The particular design treatments adopted and the rationale behind the choice of design are examined for each of the aerodynamically-sensitive areas of the vehicle. Examinations of the unique solutions to vehicle cooling, ramp and curb clearance, front wheel skirting and vehicle attitude are presented. Full scale wind tunnel data is shown for the configurations examined and vehicle stability parameters compared with conventional vehicles.
Technical Paper

50,000 Mile Vehicle Road Test of Three-Way and NOx Reduction Catalyst Systems

1978-02-01
780608
The performance of three way and NOx catalysts was evaluated on vehicles utilizing non-feedback fuel control and electronic feedback fuel control. The vehicles accumulated 80,450 km (50,000 miles) using fuels representing the extremes in hydrogen-carbon ratio available for commercial use. Feedback carburetion compared to non-feedback carburetion improved highway fuel economy by about 0.4 km/l (1 mpg) and reduced deterioration of NOx with mileage accumulation. NOx emissions were higher with the low H/C fuel in the three way catalyst system; feedback reduced the fuel effect on NOx in these cars by improving conversion efficiency with the low H/C fuel. Feedback had no measureable effect on HC and CO catalyst efficiency. Hydrocarbon emissions were lower with the low H/C fuel in all cars. Unleaded gasoline octane improver, MMT, at 0.015g Mn/l (0.06 g/gal) increased tailpipe hydrocarbon emissions by 0.05 g/km (0.08 g/mile).
X